Well Integrity/Shut-In Discussion

July 19, 2010 7:00pm CDT

7/19/2010

10.0 Daily Meetings\10 (\\right) | Mrg.\19 (ii) 1100

Topics for Discussion July 19, 7:00pm CDT

- Reservoir and Flow Model Questions and Timelines for Answers - Tina Behr-Andres, Ron Dykhuizen, Wayne Miller
- 2. Seismic Monitoring Options, Scenarios, and Trade-offs Marcia McNutt
- 3. Sonar Data Kate Moran

7/12/2010

2.

Event:	Time/Date:	Location:	Description:	Actions:	Observation:	Interpretation: BP	Interpretation: Science Team
4	18 July 10	Vertical plume	13:15 Through	17:00 Investigated	No visual or sonar	No observed plume	A plume of gas bubbles in the
	1	223m, 129deg	water column	SE end of area with	anomalies observed		water column. We cannot
	1	to 44m, 44deg	plume reported	ROV UHD, Box	in water column	1	determine the source of
	1	from wellhead	from Pisces, up	Subsea M36: 4	cutting through	1	these bubbles but two
	1	1	to 1000m above	sector sonar scan	vertical extent of		potential sources have been
		4	seabed	and seabed survey.	"plume"	1	identified: gas from the
					1	No observed plume	cement return line or
	-			Investigation by ROV	No visual or sonar		methane from the leaking
	1			@ 100m intervals	anomalies observed		flange on the cap.
	1			through water	in water column	1	,
	1			calumn to 1000m	cutting through		ŧ.
		1		above seabed	vertical extent of		
					"plume"		
5	18 July 10	35" conductor	Bubbles	2 Samples obtained	Sample 1 analyzed on		Awaiting lab analysis
	16:00	housing	observed, 1-5		Enterprise, 16%		
		(mudfine)	seconds per	1	methane		
			bubble.		Sample 2 expediting		
		-			to onshore lab for	1	
	1				analysis		
6	19 July 10	Cement return	Bubbles	Obtaining bottle to			Likely off-gassing from
		valve	observed	take sample	1	.[cemented annular - typical of
						<u> </u>	subsea wellheads
7	19 July 10	Capping stack	Leak, hydrate	Hydrate monitoring			Capping stack and associated
	02:00	connector to	formation				hardware was hydrostatically
		stack gasket					tested to over 11,000psi.
	İ						build up of gas inside stack
	1					ŀ	likely producing leak at metal
			ŀ				to metal seal downstream of
	-		1				flex connector.

1. Reservoir and Flow Model Questions and Timelines for Answers – Tina Behr-Andres, Ron Dykhuizen, Wayne Miller

7.0953335

Pending Decisions Requiring Technical Input

- · What are the monitoring priorities?
- If, and when, to stop the shut-in?
 - · Hurricane or observed leak?
- Conditions needed to initiate the Hydrostatic Control Plan (mud stabilization)?

2/60/16030

Well Integrity Data/Evidence to Consider

- Temperature vs. Time data at well head
 - Temperature has cooled and is stable at ~40°F indicating static conditions at the well head
- Pressure vs. Time data at BOP and Kill Line
 - 6 BOP Pressure is not necessarily reliable but trends without discontinuities may be useful
 - BP is providing detailed chronology of well head and riser conditions post incident to help interpret <u>BOP</u> pressure history
 - Kill Line Pressure are similar to past results from conventional shut in tests (e.g., Thunder Horse data); no remarkable features
 - Reservoir modeling does not differentiate between cases of high reservoir depletion and no or little leakage, or low reservoir depletion and high leakage
- Acoustic, Sonar and Seismic data
 - Important for assessing gas leakage rate from the sea floor
 - Current results indicate no anomalies (Use these data to bound a maximum case for leakage?)
- · Oil Flow at well head (pre shut-in)
 - Reservoir analyses and analyses of potential leaks are being conducted using previously published estimates of flow rate based on measured collection
- Fluid Properties

T-19.12(0

 Gas volume fraction estimated at 65% at 2250psi; multiphase flow to be considered in these analyses - Unommen

Pending Follow Up Actions

- Analyzing BOP pressure during June 4-15
 when there were no changes in the well head
 configuration to determine indication of
 reservoir depletion
- Working with BP on Horner plot data to resolve different interpretations
- Investigating effect of temperature change on shut-in pressure

Shy low Shaha Toy Lau Tony Lau

T (SPERMA)

2. Seismic Monitoring Options, Scenarios, and Trade-offs – Marcia McNutt, Cathy Enomoto, Bill Shedd

748 959

Shallow Hazard Monitoring During Well Shut-in

Comparison: 3D data vs July 18 line 2C seismic profile (note: lines 2 & 2B aborted)

3D-seismic data were acquired in 1999, and reprocessed in 2008.

USGS Geologic Team, July 19, 2010, 19:00

Zirpezzetja

Shallow Hazard Monitoring During Well Shut-in

We are looking for:

- 1) phase reversals of events
- 2) increased amplitudes
- 3) velocity pull down in events
- 4) acoustic disruption (i.e., newly-discontinuous areas)

1.25-00.22

USGS Interpretation (July 19, 2010)

We have not identified any of the following from our examination of seismic line 2C:

- 1) phase reversals of events
- 2) increased amplitudes
- 3) velocity pull down in events
- 4) acoustic disruption

4095500

45

Prioritizing Operations

- Status Quo
 - Two seismic runs during daylight hours
 - NOAA Pisces operates near well zone during remainder of daylight hours
 - All other operations limited to the 9 hours of darkness
- Issues
 - Build-out for additional containment still 8-10 days out and cannot be accommodated in 9-hour blocks
 - Current capacity (Helix Producer and Q4000) cannot contain entire flow
 - Never any guarantee that well remains shut in

7/19/09/5

9

Proposal

- Provide for dedicated containment mobilization days with 36 hour blocks
 - Would require foregoing seismic coverage during that daytime period
 - NOAA Pisces would be required to coordinate with and engage in planning with the other vessels to optimize survey pattern and avoid interference
 - Must ensure active and engaged ROV surveillance subsea during build

2, 18/2010

. .

Zpm Timeline

• Before 1630 of day 1, make go/no go decision for seismic acquisition on day 2

 If no go, 1700 Ops meeting plans for build out of additional containment through to dawn of day 3.

NOAA *Pisces* is included in 1930 SimOps planning for her daylight survey on day 2

 By 1630 of day 2, make go/no go decision for seismic acquisition on day 3....

30.73 - 10.10

Wed - No Second

Suggestion

- NOAA Pisces needs to return to port shortly
- Walter Mooney is returning to California for a few days
- Weather will be sub-optimal for seismic data and acoustic data acquisition on Wednesday
- Should we try this at 1630 on Tuesday? (with potentially a substitute vessel for the NOAA *Pisces*?)

7/15/2040

59

3. Sonar Data - Kate Moran

7 - 59, 0040

i de