Q. Okay. So you weren't involved in any onshore meetings by teleconference that would have evaluated the effectiveness of top kill?

A. There was a -- when we stopped pumping the top kill, obviously there was a conversation between myself, team members, and -- and our onshore leadership and engineering teams. Who all was on the other end of the phone, I couldn't tell you.

Q. Uh-huh.

A. But there was a number of people. And we had some -- you know, end up conversations about what we thought was going on, what could be the possibilities, and what to start looking at next.

Q. And you -- I think you may have already mentioned this, but just so I'm clear.

What -- what did you attribute to be the reason that top kill was unsuccessful?

A. As -- as I stated previously, one of the -- when the bridging material
doesn't do its job is because of two things. One is the pressure's just too high and it pushes the material through the area you're trying to bridge up, or the area you're trying to bridge up is just too large. Because we were restricted by the Macondo BOP fixed lines, there was a limit to the size of the material that we could put in there. We don't believe the pressure was the culprit because we saw the pressure being around 3,000 pounds, and typically, that's not enough to push it through any orifice that it could bridge. Some of this material was fairly large. So we think that the -- the hole we were trying to plug up was just too big.

Q. Okay. Is there any -- was there any thinking that the top kill may have failed because there was not a calculation of the amount of flow and the amount of top kill that would have been necessary to -- or I should say bridging material that would have been necessary to have countered that flow?

A. No. The -- the bridging