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Definition of pore volume

compressibility

e Simply put, it is the fractional change in pore volume when
subjected to a change in pore pressure:

pp Vpo app

— need to take into account grain compressibility effects,
especially in low porosity rocks.

— need to consider “poroelastic” effects when pore pressures
are very high.

- mathematically it can get very complicated to describe
compressibility, but let’s stick to the definition above for now!

* Units of compressibility are often abbreviated to ‘microsips’
when using oil-field units;
— 1 microsip = 1x10% psi' = 0.145 GPa"’
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Impact of compressibility on

reSErves recovery
- High compressibility = high recovery
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Impact of compressibility on well test

analysis (1)

One expression for the radius of investigation of a well test is:

k.t
P.U.c

where: t = time, k = permeability, ¢ = porosity, p = viscosity, ¢, =
total compressibility

r = 0.03

"~
Total compressibility is the sum of the fluid and pore compressibility (c,):
for an oil reservoir with oil compressibility, ¢, formation brine
compressibility, ¢, and water saturation, S,,,.
6
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Impact of compressibility on well

test analysis (2)

* For a hypothetical situation where: k = 250 mD; time = 8
hours; p = 0.8 ¢cP; S, =0.7; S, = 0.3; ¢, = 17x10® psi; ¢,
= 3x10% psi'; the radius of investigation varies as a
function of rock pore volume compressibility:

C, (microsips) 3 6 10 20 40
C, (GPa") 0435 087 145 2.9 5.8
Radius of

investigation (ft) 7077 6488 5891 4912 3871

Under these circumstances, a low rock compressibility
allows a well test to ‘see’ further into the formation, and
SO prove more oil in place.
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Measurement of pore volume
compressibility

* Pore volume compressibility can be determined by
several means:

— Laboratory measurement
- Wire-line estimations & correlations
— Earth-tides effects analysis

* Each has pitfalls and ease of applicability
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Laboratory measurement of pore

volume compressibility

Preferred method - uniaxial strain
compression

e Simulates stress-path followed
during reservoir depletion.

* Can be ran under conditions of
constant pore pressure and
increasing external stress; or -
under true in-situ conditions of
stress and pore pressure,
allowing the pore pressure to
reduce.

¢ Allows the simultaneous
measurement of horizontal
permeability in an axially
compacting sample.

* Permits the direct calculation of
modulus and Poisson’s ratio.
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XAHX015-000017

TREX 011519.0010



Laboratory measurement of pore

volume compressibility — test conduct

e BP preferred methods:

— pore pressure depletion at constant applied axial total stress:
confining stress is reduced to maintain zero radial strain.

— increase axial total stress at constant internal pore pressure;
confining stress is increased to maintain zero radial strain.
® Variants include:

— unload / load cycles during the test to differentiate elastic and
inelastic deformation.

- “Rate-type compaction model” (RTCM) testing to characterize
rate-effect scaling of compressibility.

— creep “hold periods” to characterize non-stabilized time-
dependent deformation.
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Laboratory measurement of pore

volume compressibility — test conduct

e Additional comments:

— preferred stress application or pore pressure depletion rate
of ~0.1 psi/sec (0.75 kPa/s) for moderately-porous rocks.

— tests are of long-duration, but loading-rate effects are
minimized (or are at least constant)
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Laboratory measurement of pore

volume compressibility — typical results
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Vleasurement of permeability

decline with depletion
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e Example shows increased permeability reduction after the onset
of accelerated compaction. Causes include pore throat
constriction and fines generation from grain rearrangement and/or
crushing.
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Laboratory measurement of pore volume

compressibility — untypical results

0.

g

Pore pressure decrease of 500 -
psi, followed by 30 minutes hold. /

* BP recommended
practices not
implemented.
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* Tests completed o .
within Onep day (ca. 3 Pore volume compressibility magnitudes

times faster than is impacted by pressure decrease and hold
recommended). duration. What should be appropriately used
in reservoir simulation in this instance?
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Laboratory measurement of PVC — a

note of caution for HPHT fields

* Significant new interest in HPHT fields — especially in GoM
deepwater and shelf. PVC and rock mechanical properties
determinations pose some additional challenges:

- perform selected tests at simulated in-situ conditions (in terms of
applied stresses & pressure, or temperature)

- may require axial stresses >20,000 psi and pore pressures up to
20,000 psi (or more)

— temperature capability up to 300°F (or more)

— need to determine Biot's poroelastic parameter up-front, in order to
get in-situ effective stresses correct.

* Evaluate the impact of temperature on strength and accelerated
compaction. Limited evidence shows a potentially greater
influence on accelerated compaction than triaxial strength.

16
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Wire-line estimation & correlations

for pore volume compressibility

e PVC is calculated from combinations sonic velocities
(compression and shear) and density, via calculation of
Young's modulus, E; Poisson’s ratio, v; and porosity.

e Compressional velocity will be influenced by the
saturating fluid (oil, gas, water) and needs to be
corrected to the appropriate “dry frame” value.

¢ Need to make dynamic-to-static corrections:
- influences moduli, as well as Biot's poroelastic constant.

¢ Predicts only elastic compressibility. Methods to predict
onset of pore collapse (accelerated compaction) from
wire-line log data are not considered trustworthy at this
point in time, though more research could be done.

17
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Importance of dynamic-to-static

correlations when using wire-line data
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Pore volume compressibility from

wire-line data
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Measurement of Earth Tides Stresses

The earth tides measurements
capture information on
compressibility at in-situ
conditions at a large scale,
when subjected to a small
pressure perturbation

Perforated test interval

20
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Transmission efficiency

. Transmission

. efficiency, T, is the
£af scalar factor applied
£ _# to the seabed data to
i8  match the downhole
£ data.

The downhole gauge
and the sea bed data
multiplied by 0.347
are shown to overlay
each other.

21
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Measurement of Compressibility from
Reservoir Tides

The net tidal pressure change recorded by a downhole gauge depends
on the relative values of rock pore compressibility and the fluid
compressibility.

C, C, = formation compressibility

Transmission efficiency, T =
C,+C; C, = fluid compressibility

Investment in a seabed gauge allows direct measurement of transmission

efficiency. If C; is known, then formation compressibility can be calculated. -
If gas is present C; >> C and T is low (~ 0.1 or less)
Field Transmission Response Sw G C
Efficiency (T) Delay (hrs) (mla%s) (ndcroﬂlps)
Field 1 0.35 0.0 15% 12 8
Field 2 - well 1 0.185 05 1% 124 36
Field 2 —well 2 0.347 05 60% 6.8 28
Field 3 0.09- 00-1.0 13% 120 15 —gas?
0.11(gas?)
Field 4 0.20 05 1% 124
Field 5 0.42 05 30% 10
22
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Scaling from laboratory to the field —

typical loading rates & magnitudes

® |n the laboratory, a 1000 psi pressure change is imposed
over 10,000 seconds, and maybe over 31,536,000
seconds (1 year) in the field — ca. 3000 times slower.

e Compressibility acting over reservoir depletion time-
scales will include creep and other “slow deformation”
effects.

e Earth-tides impose ca. 0.5 psi pressure change over a
period of a few hours.

¢ What magnitude of perturbation is imposed by well
testing and production?

¢ Wire-line logging perturbations imposes a small pressure
change at extremely high frequency. Seismic velocity
has a lower frequency, but a similar stress change.

24
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When to use what compressibility?

Reservoir Pressure versus Volumetric Strain

T 2% Assumption of uniaxial compressibility
2 I )
. —~ ‘“i Plastic vs elastic deformation
rieda | ] . ::g Implications for well test analysis
i = oo Radlus of investigation
e 1] 3 [ Aquifer response
o 6 w0 wm wo mm mo e e me 0 Material balance calculations
Resenor Prossure, psl
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(Calculated from volumetric strain (bulk volume) measurements) 6 x 10° psi' (0.87 GPa) PVC for
o e reservoir depletion
AN L |3

v [ ' .
5 2.5x10%psi? (0.36 GPa) C; for use
e, g ! in PFO well test analysis (unload
5 . ==t loops in PVC test)
i e T e 1 - o 2.8 x 10% psi” (0.41 GPa") C, from
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Theoretical model for ‘perturbation

dependent’ compressibility

¢ ‘stopped Kelvin-Voight” model,
enhanced to include rate-

independent plastic straining. .

— Instantaneous elastic straining (also

includes some viscoelastic straining

occurring faster than the shortest time 3 B
interval assumed in the model) n

- Instantaneous plastic straining obeying
a Critical-State Soil Mechanics model. |

O+— q

- 'viscoelastic' response included by a
continuous distribution of
superimposed Kelvin Voigt units where
individual strains are ‘stopped’ at a
specific value. A physical interpretation of a stop might be the closure of a set of active cracks.

Q ——0O
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Exampleapplicatim — North Sea

weakly-cemented sandstone

Effective compressibility

 Application ler Cm (x 10°¢psi! / GPa'1)
Pore Total
Seismic 1 Pa (1.5x10 psi) @ 10Hz 3/0435 8/1.16
Tidal 1 psi over 12.5 hrs 3.5/ 0.508 8.5/1.23
Pressure Fall Off | 2-days pressure fall-off U
Test (after after injecting at 5000 bbl/d 3.7 /0.537 8.7/1.26

injection period) | for 2 days
Pressure Build Up | 2-days pressure build-up

(after production | after producing at 5000 14.7/ 2.13 19.7 / 2.86
period) bbl/d for 2 days
Reservoir Reservoir pressure
Depletion reduction at 1000 psi/yr. 36/5.22 41/5.95
Reservoir Reservoir pressure increase
Repressurisation | at 1000 psi/yr. 19/2.75 24 /3.48
28
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Implementation in reservoir

simulation

e Constant value of compressibility.

A

e Pore volume compressibility multiplier: PVMULT =
Vpi(Ppi)

- V, = pore volume at pressure P,
— V,; = initial pore volume at initial pore pressure P, w
- PVMULT =1 at initial pore pressure conditions.

e Use caution when using one PVC look-up
table in fields with large relief (i.e. significant
pressure change initially within one formation
layer). You may end up with an incorrect initial

pore volume and oil-in-place.
30
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PVMULT & Permeability for a sample

undergoing accelerated compaction
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Example simulation results & other
ISsues

2 ~l!nu|nu‘] U
W oam = 12

* 9 layers.
* First three layers — upper “L" sand.
* Bottom 6 layers - “L.2" sand.
e 3 wells (A12, A14 and A15)
® 2 compaction tables (L Sand and L2 Sand) based on lab data and adjusted by history-matching.
33
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PVMULT values

e
©

Pore Volume Multiplier
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/
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lmpact of compressibility on

eSEerves recovery

120,000
— Base case
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(72] 5
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A 1 9

B 1 <2 1 1000 not known

c 1 18 n/a 1000 80

D 1 10 2 —4 years 2000 40 ‘

D 2 2 2 -4 years 1500 25

E I 8 n/a 4000 12

E 2 3 n/a 4000 12

F 1 2 n/a 1000 22

G 1 3 n/a 1500 25

Average DW 7 ? 2000 31 !

Pollof from o reservoir enginoers - y Gerald Simms. A

Early-time stiffening is commonly — though not always — seen.
Can be replicated via a “rate-type compaction” model response.

Could also be an aquifer mobilization issue — e.g. tar-mat at the oil-
water contact, mobility or surface tension effects - requiring a
certain pressure depletion before the aquifer support kicks in.
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® Measured reservoir pressure
i | ~—New simulation with RTCM pore volume multipliers
== 0Id simulation without RTCM pore volume multipliers

Pressure - psia

1
ey

2000 t 4 + + + + 4 —t +
07-Nov-82  21-Mar-84  03-Aug-85  16-Dec86  29-Apr-88 11-Sep-89  24-Jan-91 07-Jun92  20-0ct-93  04-Mar-g95 18-Jul-96
DATE

“Magnus Field Rock Compressibility During Reservoir Pressure Decline and Recharge : Application of the Rate-Type Compaction Model”,
BP Research Report POB/040/96, S.M Willson, September 1996. 37
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Other reservoir simulation features

* |mplementation depends upon the simulator used:

e Turbidite recharge options:

— “The turbidite reservoir option models the sand-shale fluid (water)
exchange within any simulation grid-block that consists of multiple sand
and shale sub-layers using an analytic, linear aquifer model.”

-~ Can be used to model low-level water production in sands remote from
the aquifer.
* Creep options:

- “The time-dependent compressibility (creep) option includes a time-
delayed compaction due to creep in addition to the standard
instantaneous compaction represented by rock compressibility.”

— Can be used to model reservoir pressure build-up following extended
shut-in conditions.

p

38
| —
XAHX015-000045

TREX 011519.0038



* Closing remarks
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Closing remarks ...

* Newer fields (especially sub-salt) now have sufficient
production data to test simulation model inputs.

* Smaller supra-salt discoveries are increasingly relying on
compaction-drive to validate project economics (e.g. one
or two well developments).

o/
¢ New HPHT exploration areas are challenging some
existing rock mechanics laboratory capabilities. “Second-
order effects” now warrant “first-order” consideration.
. Pore volume compressibility remains an important
parameter in GoM deepwater reservoir simulation, but
one where some uncertainty in understanding still exists?
40
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