Macondo Technical Note

Title: Depleted Pressure
Contributors:
Issued by:
Date: June 29, 2010
Version: A – DRAFT

Question Addressed in this Technical Note:
Discussions with the National Laboratories and other teams has resulted in a request for an estimated reservoir pressures for the Macondo field. This note provides the reservoir pressures calculated for the case in which the reservoir has produced at constant 35,000 stb/d from 20-April to 1-July.

Key Conclusions

Well Block Pressures at shut-in on 13-July-2010
Depletion Since 6/1/2010 (cumulative prodn: 2.52 mmstb total production)

<table>
<thead>
<tr>
<th>Reservoir Section</th>
<th>Top Depth ft TVD SS</th>
<th>Near Well Pressure psia</th>
<th>Reservoir Pressure psia</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>M110</td>
<td>8,969</td>
<td>4,730</td>
<td>4,730</td>
<td>gas sand at 18" shoe (depth of 18" shoe)</td>
</tr>
<tr>
<td>M57B</td>
<td>17,381</td>
<td>10,875</td>
<td>11,567</td>
<td>gas sand (cross flow)</td>
</tr>
<tr>
<td>M57C</td>
<td>17,614</td>
<td>11,397</td>
<td>12,875</td>
<td>gas sand (cross flow)</td>
</tr>
<tr>
<td>M56A</td>
<td>17,719</td>
<td>10,246</td>
<td>9,885</td>
<td>gas sand (cross flow)</td>
</tr>
<tr>
<td>M56B</td>
<td>17,890</td>
<td>10,846</td>
<td>10,878</td>
<td>water sand (light flow)</td>
</tr>
<tr>
<td>M56C</td>
<td>17,944</td>
<td>11,059</td>
<td>11,771</td>
<td>water sand (light flow)</td>
</tr>
<tr>
<td>M56D</td>
<td>17,981</td>
<td>10,921</td>
<td>11,539</td>
<td>oil sand</td>
</tr>
<tr>
<td>M56E</td>
<td>18,031</td>
<td>10,842</td>
<td>11,298</td>
<td>Main Oil Sand (on which 11,852 psia is based)</td>
</tr>
<tr>
<td>M56F</td>
<td>18,132</td>
<td>10,939</td>
<td>11,524</td>
<td>oil sand</td>
</tr>
</tbody>
</table>

Note: all pressures hydrocarbon pore volume weighted at mid-point of reservoir layer

Assumptions

1. The calculation was performed using a VIP simulation model with the following parameters:
 - Oil Bg: 2.345 rb/stb
 - c_f: 6 x 10⁻⁶ psia⁻¹
• \(c_w : 3 \times 10^{-6} \text{ psia}^{-1} \)
• GOR: 2993 SCF/stb
• OOIP: 109.9 mmstb
• Reservoir Volumes: Oil: 257.8 mmrb, \(S_{wc}: 9.7\% \) (in M56E, varies in other zones), Aquifer: 991.6 mmrb (excludes connate water, 3.8x oil volume)

2. The model is a stylized representation of the reservoir, with each layer homogeneous, and no dip.
 • The “near well pressure” is taken from the well’s gridblock, with dimensions of 100 x 100 ft.
 • The model includes the M57(B, C) and M56(B, C, D, E, F) sands, and was originally created to address whether the wellbore could become gas filled during shut-in at the “topkill.”
 • The M57 gas sands have a higher initial pressure than the main oil sands; they are modelled with a limited areal extent. These sands contribute some flow for the first 10 days of production, during which time the predicted GOR drops from 4,600 SCF/stb to 3030 SCF/stb.
 • For depletion with only the M56D-F open, depletion at a constant 35 mbd would yield a near well pressure in the M56E of 10,889 psia, and there would be no change in the sand’s average pressure.

3. Reservoir sands’ properties and depths were modelled per spreadsheet “MC252 – 1 Sand Description v2.xls”, (24-May, email: Kelly McAuligian)