Reservoir Pressure Response

8 July 2010
Outline

- Modelling used preliminary slab model
 - Structural model incomplete Wed. evening
 - PIE used to cross-check
- Fixed Parameters:
 - M110 Size (45 mmr
- Sensitivity Parameters:
 - Aquifer: 3.8x, 13.7x, 24x (larger aquifers with some K red' n)
 - Cr: 6, 12, 18 µsips
 - Oil Rate: 35, 50, 60 mbd
 - Skin: 0, 10, 20
 - Xflow 0, ??, ?? rb/d (approximate, controlled with skin)
Depletion

- Aquifer Impact (referenced to 4x Aquifer, 6 μsips, @35 mbd)
 - No Aquifer: -800 psi
 - 13.7x Aquifer: +120 psi
 - 24x Aquifer: +130 psi
- Compressibility
 - 12 μsips: +200 psi
 - 18 μsips: +300 psi
- S.I. BHP Range (M56E, 25 hrs)
 - Near well: 7,900 - 11,030 - 11,120
 - Reservoir: 9,360 - 11,360 - 11,590
 - Recommend: new "most likely". 3.8x aquifer, 12 μsips, 35 mbd

M56E H/C Pressure
Rate = 35 mbd

Colours: aquifer size
4x, 14x, 24x
Shapes: C

Note: Values reflect additional 10 days of depletion
Post Shut-In Behaviour

- Bottomhole pressure changes very rapidly for first 3 hours
 - \(\Delta P/\Delta t > 30,000 \) psi/hr
- Differences
 - Layer crossflow
 - 2 layers vs. many
 - Solution method & timesteps
 - Similar solutions during critical period (5 < t < 100 hrs)
Variation of $\frac{\Delta P}{\Delta t}$ with Parameters: Q_o & X_{flo}

$\Delta P/\Delta t$ of $\sim 5 - 10$ psil/hour for rates between 35 & 60 mbpd at 5 hours of shut-in

$\Delta P/\Delta t$ of ~ 1 psil/hour for crossflow between 0 & 30 mbpd at 5 hours of shut-in
ΔP/Δt at 5 hours

- Insensitive to:
 - Aquifer (1 psi/hr)
 - Compressibility (1 psi/hr)

- Largest sensitivities:
 - Crossflow
 - Average production rate
 - Sensitivity to Qₘ > Xfₘ
Input Data

- Data provided by GolMx Reservoir Team
- Rock Properties
 - Developed from MC252 logs
 - Permeability
 - 275 mD in main M56E sand
 - 397 mD in M56A gas/oil sand (only 2.5)
 - 86 – 110 mD in other oil sands
 - Compressibility:
 - Cr: 6 x 10^6 psia^-1
 - Cw: 3 x 10^6 psia^-1
 - Cf: ~13 x 10^6 psia^-1
- Fluid properties generated by EoS; volatile, near critical fluid
- Tubing performance matched to GAP / Prosper work of T. Liao, A. Chitale & M Goldemir
Macondo RF – Aquifer Size

Oil Accumulation
110 mmstb = 258 mmrb

<table>
<thead>
<tr>
<th>Net Sand Thickness, ft.</th>
<th>Porosity, %</th>
<th>Aquifer Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>13</td>
<td>1.5x</td>
</tr>
<tr>
<td>44</td>
<td>17</td>
<td>2.0x</td>
</tr>
<tr>
<td>66</td>
<td>17</td>
<td>2.9x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Net Sand Thickness, ft.</th>
<th>Porosity, %</th>
<th>Aquifer Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>13</td>
<td>1.9x</td>
</tr>
<tr>
<td>44</td>
<td>17</td>
<td>2.3x</td>
</tr>
<tr>
<td>66</td>
<td>17</td>
<td>3.7x</td>
</tr>
</tbody>
</table>

Aquifer = 992 mmrb

Largest Aquifer Size – used as base case (will minimise depletion)
Depletion Response @wellbore

- PIE gives similar results to VIP
 - Constant compressibility (too low)
 - Single phase
- P_{mf} drops ~6 psi/day (for 35mbd case)
- Lack of observed depletion could be due to fixed seafloor pressure and large critical

Possible impact of seafloor pressure

- Sea = 2370 psi
- BHP = 1800 psi
- Max $Sp = 1.36$
Conclusions

- Actual reservoir depletion dependent on:
 - Flowrate
 - Oil column size
 - Aquifer
- Limited depletion observed in wellhead could be controlled by non-reservoir mechanisms
 - Large orifice
 - Flowpath / choke between BOP & reservoir
 - Broken gauge
 - Crossflow
- Largest uncertainties: flowrate and pressure drop

BP-HZN-2179MDL07033650
BPD568-013655
CONFIDENTIAL

TREX 010841.0011
DRAFT
Match to "Tubing Performance"

- Flowpath is a major (principle?) source of THP uncertainty
- Various cases considered:
 - Annular flow
 - Casing flow
 - Annular + casing flow
- VIP wellbore modelling capability limited in comparison with Prosper / Gap
 - Matched lift with simple tubing string
 - Equivalent diameter & roughness
Influences on Observable Shut-In Pressure

At Shut-In

High Wellhead Pressure
- Limited crossflow
- Well integrity above 18" shoe
 - small leak into small zone
- Large aquifer
- Lower production (higher skin)

Low Wellhead Pressure
- Integrity failure (crossflow into M110)
- Smaller aquifer
- Higher production (& lower skin)

After Shut-In

Rising THP
- Fluid Segregation
 - Only if $P_{bg} < 6,550$psi
 - Increase would begin at low rates or
 at flow cessation
- Reservoir Response (radius of
 investigation)
- Aquifer size will influence P_{sat}
- Cessation of crossflow (pressure
 equilibration)

Falling THP
- Wellbore temperature equilibration
 (cooling)
- Large leak with limited inflow
MBal Results for Various Aquifers

![Graph showing water levels over time for various aquifers.](image-url)
Future Work: Add Structure
Key Conclusions wrt SiWHP

- Impact of crossflow:
 - Reservoir fluid fills the M110, charging it above fracture capacity
 - Possible broach to surface
- M110 sand is small (5' thick), in one scenario could fill to fracture pressure in 10 days (resvr flow > 32mbd).

Can we detect this scenario?
- Leak off will not be detectable (constant charge from M56)
- Crossflow at 18" shoe would be detectable if "large enough"
 - Max Q, through 6 disks: 6000 bpd
- Would manifest itself as a lower than "anticipated" SI BOP pressure
- Uncertainty in SI BOP pressure is driven by aquifer & rate
Model Approach & Purpose

- Model constructed to address impact of crossflow of M57B & M56A gas sands during "top kill"
 - Response of observed pressures
 - GOR variation with time
- Requested to investigate whether depletion was consistent with known pressures below BOP
- Requested to avoid making any conclusions regarding likely rates
 - Role of flowrate investigation team

Approach
- Simple: tight timing, multiple unknowns
- Single layer per reservoir (M57B to M56F, with intervening shales)
- 10 x 12 x 17; no structure
Outline

- Modelling used preliminary slab model
 - Structural model incomplete Wed. evening
 - PIE used to cross-check
- Fixed Parameters:
 - M110 Size (45 mmrb)
- Sensitivity Parameters:
 - Aquifer: \(3.8x, 13.7x, 24x\) (larger aquifers with some K red'n)
 - Cr: \(6, 12, 18\) \(\mu\)sips
 - Oil Rate: \(35, 50, 60\) mbd
 - Skin: 0, 10, 20
 - Xflow \(0, ??, ??\) rb/d (approximate, controlled with skin)
Depletion

- Aquifer Impact (referenced to 4x Aquifer, 6 μsips, @35 mbd)
 - No Aquifer: -800 psi
 - 13.7x Aquifer: +120 psi
 - 24x Aquifer: +130 psi

- Compressibility
 - 12 μsips: +200 psi
 - 18 μsips: +300 psi

- S.I. BHP Range (M56E, @5 hrs)
 - Near well: 7,900 - 11,030 – 11,120
 - Reservoir: 9,360 - 11,360 – 11,590

- Recommend: new “most likely”: 3.8x aquifer, 12 μsips, 35 mbd

M56E H/C Pressure

Rate = 35 mbd

Note: values reflect additional 15 days of depletion
Post Shut-In Behaviour

- Bottomhole pressure changes very rapidly for first 3 hours
 - $\Delta P/\Delta t > 30,000$ psi/hr
- Differences
 - Layer crossflow
 - 2 layers v. many
 - Solution method & timesteps
- Similar solutions during critical period ($5 < t < 100$ hrs)
Variation of $\Delta P/\Delta t$ with Parameters: Q_o & X_{flo}

$\Delta P/\Delta t$ of $\sim 5 - 10$ psi/hour for rates between 35 & 60 mbd at 5 hours of shut-in

$\Delta P/\Delta t$ of $\sim 1 - 3$ psi/hour for crossflow between 0 & 30 mbd at 5 hours of shut-in
\(\Delta P/\Delta t \) at 5 hours

- Insensitive to:
 - Aquifer (1 psi/hr)
 - Compressibility (1 psi/hr)

- Largest sensitivities:
 - Crossflow
 - Average production rate
 - Sensitivity to \(Q_0 > X_{flo} \)
Input Data

- Data provided by GoMx Reservoir Team
- Rock Properties
 - Developed from MC252 logs
 - Permeability
 - 275 mD in main M56E sand
 - 397 mD in M56A gas/oil sand (only 2.5')
 - 86 - 110 mD in other oil sands
 - Compressibility:
 - Cr: 6×10^6 psia$^{-1}$
 - Cw: 3×10^6 psia$^{-1}$
 - Cf: -13×10^6 psia$^{-1}$
 - Fluid properties generated by EoS; volatile, near critical fluid
- tubing performance matched to GAP / Prosper work of T. Liao, A. Chitale & M Gokdemir
Macondo RF —
Aquifer Size

Oil Accumulation
110 mmstb = 258 mmrb

<table>
<thead>
<tr>
<th>9500 acre Aquifer</th>
<th>Net Sand Thickness, ft.</th>
<th>Porosity, %</th>
<th>Aquifer Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>44</td>
<td>13</td>
<td>1.5x</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>17</td>
<td>2.0x</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>17</td>
<td>2.9x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12400 acre Aquifer</th>
<th>Net Sand Thickness, ft.</th>
<th>Porosity, %</th>
<th>Aquifer Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>44</td>
<td>13</td>
<td>1.9x</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>17</td>
<td>2.5x</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>17</td>
<td>3.7x</td>
</tr>
</tbody>
</table>

Largest Aquifer Size — used as base case (will minimise depletion)
Depletion Response @wellbore

- PIE gives similar results to VIP
 - Constant compressibility (too low)
 - Single phase
- P_{wf} drops ~ 8 psi/day (for 35mbd case)
- Lack of observed depletion could be due to fixed seafloor pressure and large orifice

![Graph showing pressure vs. time for Macondo M1 Shut-In experiment with skin values of 10, 20, and 30.]

![Diagram showing possible impact of seafloor orifice with water column at 2270 psi + ΔP, BOP $\Delta P=10$ psi, and maximum $\Delta P=1,340$.]

Depth, ft/Vdss

Flowing BH Pressure
Conclusions

- Actual reservoir depletion dependent on:
 - Flowrate
 - Oil column size
 - Aquifer
- Limited depletion observed in wellhead could be controlled by non-reservoir mechanisms
 - Large orifice
 - Flowpath / choke between BOP & reservoir
 - Broken gauge
 - Crossflow
- Largest uncertainties: flowrate and pressure drop

\[2270 \text{ psi} \]
\[\text{ambient} \]
Difference between Aquifer & H/C Pressure
Match to "Tubing Performance"

- Flowpath is a major (principle?) source of THP uncertainty
- Various cases considered:
 - Annular flow
 - Casing flow
 - Annular + casing flow
- VIP wellbore modelling capability limited in comparison with Prosper / Gap
 - Matched lift with simple tubing string
 - Equivalent diameter & roughness
Influences on Observable Shut-In Pressure

At Shut-In

High Wellhead Pressure
- Limited crossflow
- Well integrity above 18” shoe
 - Small leak into small zone
- Large aquifer
- Lower production (higher skin)

Low Wellhead Pressure
- Integrity failure (crossflow into M110)
- Smaller aquifer
- Higher production (& lower skin)

After Shut-In

Rising THP
- Fluid Segregation
 - Only if $P_{thp} < 6,650$ psia
 - Increase would begin at low rates or at flow cessation
- Reservoir Response (radius of investigation)
 - Aquifer size will influence P_{final}
- Cessation of crossflow (pressure equilibration)

Falling THP
- Wellbore temperature equilibration (cooling)
- Large leak with limited inflow
Future Work: Add Structure
Key Conclusions wrt SIWHP

- Impact of crossflow:
 - Reservoir fluid fills the M110, charging it above fracture capacity
 - Possible broach to surface

- M110 sand is small (5' thick), in one scenario could fill to fracture pressure in 10 days (resvr flow > 32mbd).

Can we detect this scenario?

- Leak off will not be detectable (constant charge from M56)

- Crossflow at 18” shoe would be detectable if “large enough”
 - Max Q_\circ through 6 disks: 6000 bpd

- Would manifest itself as a lower than “anticipated” SI BOP pressure

- Uncertainty in SI BOP pressure is driven by aquifer & rate
Model Approach & Purpose

- Model constructed to address impact of crossflow of M57B & M56A gas sands during “top kill”
 - Response of observed pressures
 - GOR variation with time
- Requested to investigate whether depletion was consistent with known pressures below BOP
- Requested to avoid making any conclusions regarding likely rates
 - Role of flowrate investigation team

- Approach
 - Simple: tight timing, multiple unknowns
 - Single layer per reservoir (M57B to M56F, with intervening shales)
 - 10 x 12 x 17; no structure