Executive Summary

- Assess potential regrets with the Junk Shot or kill operation.
 - Blow riser top – remove restriction/increase flow
 - Lose containment through casing
 - Under ground flow - compromise relief well
- More diagnostic work is needed
 - Oil Flow path - Pump Styrofoam, dye
 - Choke points - pressures in the stack/riser
- Consider methods to optimize junk shot
 - Better, More and Faster (subsea reloading, more barrels, targeted shot)
Top Ten Findings

• These Key findings are nearly unanimous messages delivered from the three groups of the Peer Assist Team.
• The findings are illustrated by the sub bullets from examples in the breakout reports.
MC 252 Junk Shot Peer Assist – 6 May 2010
Report of Findings – Executive Summary

Top Ten Findings

1. While no technical "new stopping" issue identified, significant risk is present and more diagnostic work and consequence assessment is needed before pulling the WIPJET in the junk shot strings.
 - Need to understand the restrictions and flow paths (e.g. casing annulus);
 - Pressure measurements (pre-drawout, test, kill test);
 - Downstream and speed of make-up;
 - Open/closed bottom rams and check operating pressure (can indicate well pressure).
2. Develop comprehensive understanding of the knock on risk of successfully plugging the well (engineering analysis required).
 - Potential issues – wrap slips, flange seal, sleeve seal, downhole integrity etc.
 - Odds of test success.
3. Junk shots are often not successful (need more than 2 shots)
 - Develop a method for selective releasing.
 - Add more baskets in the existing manifold.
 - Consider onshore testing of "junk shot right" (pump from Q4000 and see if successful plug starts to give way while killing).
 - Consider optimal junk shot material (readable pills that meet in BOP, pressure and temperature considerations, shelf life, encapsulating method).
4. Consider how to best utilize CSS lines.
 - Sequential or simultaneous injection.
5. Consider what to do if junk shot is successful but also plugs off seal assembly while killing the well.
 - Need plan to address this non-well kill scenario.
6. Consider pumping fluid specifications.
 - Hydrate inhibition.
 - Erosion risk.
 - Compatibility issues with oil.
7. Develop a decision tree for a number of approaches and outcomes for the junk shot.
 - Hydrate plug, junk shot plug, etc.
8. Consider advantages of dual control approach for access to BOP.
 - Collet/Casing.
 - Cutter damage surface telemetry.
10. Participants believe they can provide additional support, but are looking for more data for engineering analysis.
Table of Contents

These Findings are summarized by categories of inquiry developed by the three working groups of the Peer Assist Team and as reported by these groups at the conclusion of the working sessions.

1. What is missing from the plan? Identify gaps.
2. Identify risks and potential mitigations.
3. Identify opportunities and potential alternatives.
4. What other suggestions does the group have?
5. Identify recommendations for discipline experts.
Identify opportunities and potential alternatives

- Develop a spool manifold
- Pump discharge plan
- Develop encapsulating method to contain the junk shot material – facilitate
- Dual conduit – strap coiled tubing to the 6-5/8" riser to pump some type of reactive material into BOP stack or give another route to pump in
- Specially designed epoxy
- Use choke & kill lines as a flow path – flow to facilities? If both lines are used for JS and no route for pressure relief, there could be an issue.
- May want to modify the manifold to incorporate more junk shot (4 loads rather than 2)
- Add extra valve on C&K lines
- Relief on injection lines – do we need a relief valve