"History Matching" of shut-in pressure data

Paul Hsieh, USGS

CONFIDENTIAL

History Matching

- Combining an optimization program with a reservoir simulator to determine the reservoir geometry and properties so that the simulated pressures match observed pressures.
- Also known as:
 - Automated calibration
 - Parameter estimation
 - Inverse method

Assumed "Known"

- Volume of original oil in place: 110 million stb
- Formation volume factor: 2.35 rb/stb
- Porosity: 21%
- Reservoir thickness: 90 ft
- Reservoir Area: 85.3 million square feet
- Reservoir is rectangular of varying dimensions:
 - $-2,000 \text{ ft } \times 42,665 \text{ ft}$ $-5,000 \text{ ft } \times 17,066 \text{ ft}$
 - $-3,000 \text{ ft } \times 28,444 \text{ ft}$ $-6,000 \text{ ft } \times 14,222 \text{ ft}$
 - $-4,000 \text{ ft} \times 21,333 \text{ ft} -7,000 \text{ ft} \times 12,190 \text{ ft}$
- Various flow rates:
 - 40,000 stb/day
 - 50,000 stb/day
 - 60,000 stb/day
- No aquifer support, well has integrity (no casing leak)

CONFIDENTIAL

Estimated or "Fitted" Parameters

- Location (x_w, y_w) of well in rectangular reservoir
- Permeability (k)
- Rock compressibility (c_r)
- Final shut-in pressure (p̄)

The sum of squares of residuals (SSR) gives a measure of how well the model simulated pressures match the observed pressures.

Residual = simulated - observed

Selected Results. Flow rate = 50,000 stb/day

Length (ft)	28,444	17,066	12,190
Width (ft)	3,000	5,000	7,000
Aspect ratio	~ 9:1	~ 3:1	~ 2:1
Well location (ft)	$x_w = 4,803$ $y_w = 1,500$	$x_w = 1,901$ $y_w = 1,902$	$x_w = 1,631$ $y_w = 1,890$
k (md)	491	459	339
c _r (10 ⁻⁶ psi ⁻¹)	15.5	9.4	7.6
p̄ (psi)	7,296	6,979	6,867
SSR (psi ²)	92	58	1,682

For a different flow rate, the same match can be obtained by proportionally scaling k and c_r .

IGS092-010198

Horner Plot

Reservoir Pressure during shut-in

Conclusions

- Shut-in pressure data provide valuable information for reservoir characterization.
- Shut-in data can be well matched by a reservoir model with:
 - Rectangular area of length = 17,066 ft and width = 5,000 ft (aspect ratio ~ 3:1).
 - No aquifer support
 - No casing leak (well has integrity)
 - Permeability and rock compressibility within expected range
- Projected final shut-in pressure ~ 7,000 psi

